СОВРЕМЕННОЕ СОСТОЯНИЕ ПАРАЛЛЕЛЬНЫХ РОБОТ-МАНИПУЛЯТОРОВ ДЛЯ РЕАБИЛИТАЦИИ
DOI:
https://doi.org/10.52167/1609-1817-2022-123-4-483-500Ключевые слова:
параллельный робот-манипулятор, роботы для реабилитации голеностопного сустава, медицинское устройство, тип привода, линейный электропривод, пневматический приводАннотация
В данной статье подробно описаны типы параллельных робот-манипуляторов с пневматическим и электрическим приводом, а также изучены конфигурации исполнительных механизмов, с учетом различных методов контроля траектории и методов реабилитации. Рассмотренный параллельный робот-манипулятор показывает, что ему нужно еще больше работать над улучшением механического дизайна и интерактивных стратегий управления путем сравнения, анализа и обобщения различий и сходств между ними. Надеемся, что данная статья станет полезным ресурсом для будущих разработчиков роботов-помощников и будет способствовать дальнейшему развитию данной отрасли.
Библиографические ссылки
[1] Mozafarian DB, Benjamin EJ, Go AS, et al. heart disease and stroke statistics-2015 Update: a report from the American heart association. Circulation. 2015;133(4): e38–360.
[2] Zeng X, Zhu G, Zhang M, et al. Reviewing clinical effectiveness of active training strategies of platform-Based ankle rehabilitation robots. J Health care Eng. 2018; 2018:1–12.
[3] Zhang M, Zhu G, Nandakumar A, et al. A virtual-reality tracking game for use in robot-assisted ankle rehabilitation. In: IEEE/ASME International Conference on Mechatronic & Embedded Systems & Applications (MESA), Senigallia. 2014, pp. 1-4.
[4] Khalid YM, Gouwanda D, Parasuraman S. A review on the mechanical design elements of ankle rehabilitation robot. In: Proceedings of the institution of mechanical engineer’s part H journal of engineering in medicine. 2015, p. 452–63.
[5] Li J, Zhang Z, Tao C, et al. A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons. Int J Adv Robot Syst. 2017; 14(3):1–14.
[6] Latham NK, Jette DU, Warren RL, et al. Pattern of functional change during rehabilitation of patients with hip fracture. Archiv Phys Med Rehabil. 2006; 87(1):111–6.
[7] Burdea GC, Cioi D, Kale A, et al. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy-a case study series. IEEE Trans Neural Syst Rehabil Eng. 2013; 21(2):165–73.
[8] Zhu G, Zeng X, Zhang M, et al. Robot-assisted ankle rehabilitation for the treatment of drop foot: A case study. In: IEEE/ASME International conference on mechatronic & embedded systems & applications (MESA). 2016, pp. 1-5.
[9] Farjadian A B, Nabian M, Hartman A, et al. Position versus force control: Using the 2-DOF robotic ankle trainer to assess ankle’s motor control. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL. 2014, p. 1186-9.
[10] Mirelman A, Bonato P, Deutsch JE. Efects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009; 40(1):169–74.
[11] Chen K, Wu YN, Ren Y, et al. Home-based versus laboratory-based robotic ankle training for children with cerebral palsy: a pilot randomized comparative trial. Archiv Phys Med Rehabil. 2016;97(8):1237–43.
[12] Zhang M, Davies TC, Xie S. Efectiveness of robot-assisted therapy on ankle rehabilitation—a systematic review. J NeuroEng Rehabil. 2013; 10(1):30.
[13] Hussain S, Jamwal PK, Ghayesh MH. State-of-the-art robotic devices for ankle rehabilitation: mechanism and control review. Proc Instit Mech Eng. 2017; 231(12):1224–34.
[14] Miao Q, Zhang M, Wang C, et al. Towards optimal platform-based robot design for ankle rehabilitation: the state of the art and future prospects. J Healthc Eng. 2018; 2018:1–9.
[15] Marian G. Alvarez-Perez, Mario A. Garcia-Murillo, J. Jesús CervantesSánchez. Robot-assisted ankle rehabilitation: a review, disability and rehabilitation. Assist Technol. 2020; 15(4):394–408.
[16] Girone M, Burdea G, Bouzit M. The Rutgers ankle orthopedic rehabilitation interface. In: Proceedings of the ASME dynamic systems and control division. Nashville, TN, Nov. 1999, p. 305-12.
[17] Siegler S, Chen J, Schneck CD. The three-dimensional kinematics and fexibility characteristics of the human ankle and subtalar joint-Part I: Kinematics. J Biomech Eng. 1988; 110(4):364–73.
[18] Boian R F, Kourtev H, Erickson K, et al. Dual steward-platform gait rehabilitation system for individual’s post-stroke. In: Presented at International Workshop on Virtual Rehabilitation Piscataway Nj. 2003, pp. 92.
[19] Yoon J, Ryu J. A new family of 4-DOF parallel mechanisms (1T-3R and 2T-2R) with two platforms and its application to a footpad device. In: ASME 2004 international design engineering technical conferences and computers and information in engineering conference, Vol 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B. 2004, p. 257-65.
[20] Yoon J, Ryu J. A novel reconfigurable ankle/foot rehabilitation robot. IEEE international conference on robotics & automation. IEEE, 2005; –5.
[21] Dai JS, Zhao T, Nester C. Sprained ankle physiotherapy-based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Autonom Robots. 2004; 16(2):207–18.
[22] Liu G, Gao J, Yue H, et al. Design and kinematics analysis of parallel robots for ankle rehabilitation. IEEE/RSJ international conference on intelligent robots & systems. IEEE, 2006; 253–8.
[23] Saglia J A, Tsagarakis N G, Dai J S, et al. A high performance 2-dof overactuated parallel mechanism for ankle rehabilitation. 2009 IEEE international conference on robotics and automation. IEEE, 2009; 2180-2186.
[24] Saglia JA, Tsagarakis NG, Dai JS, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation. Proc Instit Mech Eng. 2009; 223(1):53–70.
[25] Saglia J A, Tsagarakis N G, Dai J S, et al. Control strategies for ankle rehabilitation using a high-performance ankle exerciser. 2010 IEEE international conference on robotics and automation (ICRA). IEEE, 2010; 2221–7.
[26] Saglia JA, Tsagarakis NG, Dai JS, et al. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. Int J Robot Res. 2009; 28(9):1216–27.
[27] Hamid R, Mozafar S, Alireza R, et al. Path planning of the hybrid parallel robot for ankle rehabilitation. Robotica. 2016; 34:173–84.
[28] Rastegarpanah A, Rakhodaei H, Saadat M, et al. Path-planning of a hybrid parallel robot using stifness and workspace for foot rehabilitation. Adv Mech Eng. 2018; 10:1–10.
[29] Jamwal PK, Xie S, Aw KC. Kinematic design optimization of a parallel ankle rehabilitation robot using modifed genetic algorithm. Robot Autonom Syst. 2009;57(10):1018–27.
[30] Jamwal P K, Hussain S. Design optimization of a cable actuated parallel ankle rehabilitation robot: A fuzzy based multi-objective evolutionary approach. J Intellig Fuzzy Syst. 2016; 25:1897–1908.
[31] Jamwal PK, Hussain S. Multicriteria design optimization of a parallel ankle rehabilitation robot: fuzzy dominated sorting evolutionary algorithm approach. IEEE Trans Syst Man Cybern Syst. 2016; 46(5):589–97.
[32] Zhang M, Cao J, Zhu G, et al. Reconfgurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot Autonom Syst. 2017; 98:213–21.
[33] Tsoi Y H, Xie S Q. Design, and control of a parallel robot for ankle rehabiltation. In: 15th international conference on mechatronics and machine vision in practice. 2008, p. 515-520.
[34] Jamwal PK, Xie SQ, Tsoi YH, et al. Forward kinematics modelling of a parallel ankle rehabilitation robot using modifed fuzzy inference. Mech Mach Theory. 2010; 45(11):1537–54.
[35] Wang C, Fang Y, Guo S, Chen Y. Design and kinematical performance analysis of a 3 − RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation. J Mech Robot. 2013; 5(4):041003-041003-11.
[36] Wang C, Fang Y, Guo S. Multi-objective optimization of a parallel ankle rehabilitation robot using modifed diferential evolution algorithm. Chin J Mech Eng. 2015;2 8(4):702–15.
[37] Wang C, Fang Y, Guo S, et al. Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation. Robotica. 2015; 33(02):366–84.
[38] Cazalilla J, Vallés M, Mata V, et al. Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models. Robot Comput Integr Manufact. 2014, p. 468–77.
[39] Abu-Dakk FJ, Valera A, Escalera JA, et al. Trajectory adaptation and learning for ankle rehabilitation using a 3-PRS parallel robot. In: International conference on intelligent robotics and applications. 2015, p. 1–8.
[40] Vallés Marina, Cazalilla José, Valera Ángel, et al. A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica. 2017; 35:1939–57.
[41] Zhang L, Li J, Dong M, et al. Design and workspace analysis of a parallel ankle rehabilitation robot (PARR). J Healthc Eng. 2019; 4:1–10.
[42] Li J, Zuo S, Zhang L, et al. Mechanical design and performance analysis of a novel parallel robot for ankle rehabilitation. J Mech Robot. 2020;12(5):051007.
[43] Zuo S, Li J, Dong M, et al. Design and performance evaluation of a novel wearable parallel mechanism for ankle rehabilitation. Front Neurorobot. 2020; 14:1–14.
[44] Dong M, Kong Y, Li J, et al. Kinematic calibration of a parallel 2-UPS/RRR ankle rehabilitation robot. Journal of Healthcare Engineering, 2020, 3053629.
[45] Meng W, Liu Q, Zhang M, et al. Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles. In: IEEE international conference on advanced intelligent mechatronics. IEEE. 2017, p. 82–87.
[46] Jamwal P K, Xie S, Farrant J. Fuzzy control of a pneumatic muscle driven parallel robot for ankle rehabilitation. In: ASME 2009 international design engineering technical conferences & computers & information in engineering conference. 2009, pp. 1–10.
[47] Jamwal PK, Xie SQ, Hussain S, et al. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans Mechatron. 2014; 19(1):64–75.
[48] Jamwal PK, Hussain S, Tsoi YH, et al. Musculoskeletal model for path generation and modifcation of an ankle rehabilitation robot. IEEE Trans Hum Mach Syst. 2020; 50(5):373–83.
[49] Meng W, Xie SQ, Liu Q, et al. Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training. IEEE/ASME Trans Mechatron. 2017; 22(1):173–84.
[50] Ai Q, Zhu C, Zuo J, et al. Disturbance-estimated adaptive backstepping sliding mode control of a pneumatic muscles-driven ankle rehabilitation robot. Sensors. 2018; 18(1):66.
[51] Zuo J, Meng W, Liu Q, et al. Coupling Disturbance Compensated MIMO Control of Parallel Ankle Rehabilitation Robot Actuated by Pneumatic Muscles. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), Macau, China. 2019, pp. 6608–13.
[52] Zhang M, McDaid A, Veale AJ, et al. Adaptive robot with trajectory tracking control of a parallel ankle rehabilitation joint-space force distribution. IEEE Access. 2019; 7:85812–20.
[53] Ayas MS, Altas IH, Sahin E. Fractional order-based trajectory tracking control of an ankle rehabilitation robot. Trans Instit Measur Control. 2016; 40(2):550–64.
[54] Ayas MS, Altas IH. Designing and implementing a plug-in type of repetitive controller for a redundantly actuated ankle rehabilitation robot. Proc Instit Mech Eng. 2018; 232(5):592–607.
[55] Krebs HI, Volpe BT, Aisen ML, et al. Increasing productivity and quality of care: Robot-aided neurorehabilitation. J Rehabil Res Dev. 2000; 37(6):639–52.
[56] Girone M, Burdea G, Bouzit M, et al. Orthopedic rehabilitation using the “Rutgers ankle” interface. Studies in Health Technology & Informatics. 2000; 89–95.
[57] Yoon J, Ryu J, Lim KB. Reconfgurable ankle rehabilitation robot for various exercises: research articles. J Robot Syst. 2005; 22(S1):15–33.
[58] Saglia JA, Tsagarakis NG, Dai JS, et al. Control strategies for patientassisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Trans Mechatron. 2013;18(6):1799–808.
[59] Tsoi Y H, Xie S Q. Impedance control of ankle rehabilitation robot. In: IEEE international conference on robotics & biomimetics. IEEE. 2009, p. 840–5.
[60] Tsoi Y H, Xie S Q, Graham A E. Design, modeling and control of an ankle rehabilitation robot. In: Liu D, et al., Eds. Design and control of intelligent robotic systems. Berlin: Springer. 2009, p. 377–99.
[61] Tsoi Y H, Xie S Q, Mallinson G D. Joint force control of parallel robot for ankle rehabilitation. In: IEEE international conference on control & automation. IEEE. 2010, p. 1856–61.
[62] Tsoi Y H. Modelling and adaptive interaction control of a parallel robot for ankle rehabilitation. University of Auckland. 2011, https://researchspace. auckland.ac.nz/handle/2292/6756.
[63] Li J, Fan W, Dong M. Research on control strategies for ankle rehabilitation using parallel mechanism. Cogn Comput Syst. 2020; 2(3):105–11
[64] Li J, Fan W, Dong M, et al. Implementation of passive compliance training on a parallel ankle rehabilitation robot to enhance safety. Ind Robot. 2020; 47(5):747–55.
[65] Dong M, Fan W, Li J, et al. A new ankle robotic system enabling wholestage compliance rehabilitation training. In: IEEE/ASME transactions on mechatronics, 2020, Early access, https://doi.org/10.1109/TMECH.2020. 3022165.
[66] Jamwal PK, Hussain S, Ghayesh MH, et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Trans Ind Electron. 2016; 63(6):3638–47.
[67] Jamwal PK, Hussain S, Ghayesh MH, et al. Adaptive impedance control of parallel ankle rehabilitation robot. J Dynam Syst Meas Control. 2017; 139:1–7.
[68] Liu Q, Liu A, Meng W, et al. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Front Neurorobot. 2017; 11:1–19.
[69] Zhang M, Xie SQ, Li X, et al. Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans Ind Electron. 2018; 65(2):1398–407.
[70] Ayas MS, Altas IH. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng Pract. 2017; 59:44 – 54.
[71] Zhu L, Shi X, Chen Z, et al. Adaptive servomechanism of pneumatic muscle actuators with uncertainties. IEEE Trans Ind Electron. 2016; 64(4):3329–37.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Нұрсұлтан Жетенбаев, Акнур Дуйсебаева, Гани Балбаев, Бейбит Шингисов, Динара Сейсенова
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.