КРУТИТЕЛЬНЫЕ И КОЛЕБАТЕЛЬНЫЕ МОМЕНТЫ СФЕРИЧЕСКОГО ШАРИКОВОГО ПОДШИПНИКА СФЕРИЧЕСКОГО ГИРОСКОПА
DOI:
https://doi.org/10.52167/1609-1817-2022-122-3-58-65Ключевые слова:
Большой натяг и перегрузка, консервативные составляющие моментов сил, момент ухода от" сухого " трения, ротор, статор, момент колебательного трениАннотация
Уводящие моменты, возникающие вследствие упругих деформаций чувствительных элементов навигационных систем, изучены еще недостаточно. В данной статье представлены результаты определения уводящих моментов «сухого» трения, вызванные за счет контакта шариков с кольцами в шаровом гироскопе, обусловленные большим натягом и перегрузкой. Установлены консервативные составляющие моментов сил, возникающие из-за осевого дебаланса и несферичностью ротора. Определены связи между моментом колебательного трения, верчения и контактной нагрузкой. Показано, что при работе приборов, оснащенных сферическими кинематическими парами в шарикоподшипниках, наблюдаются азимутальные погрешности, перпендикулярные кинетическому моменту, вызывающие момент ухода.
Библиографические ссылки
[1]Кобрин А.И., Сартаев К.З. Погрешности гироскопа с центральной сферической опорой, вызванные влиянием возмущающих моментов двигателя // Вестник МГТУ. Серия: Приборостроение.– 1994 - №2.– С.87-91.
[2]Ковалев М.П. Динамическое и статическое уравновешивание гироскопических устройств. – М.: Машиностроение, 1965.
[3]Ковалев М.П., Народецкий М.З. Расчет высокоточных шарикоподшипников. – М.: Машиностроение, 1980. – 376 с.
[4]Ковалев М.П. Опоры и подвесы гироскопических устройств. – М.: Машиностроение, 1970. – 287 с.
[5]Делекторский Б.А., Мастяев Н.З., Орлов И.Н. Проектирование гироскопических электродвигателей. – М.: Машиностроение, 1968. – 252 с.
[6]Гу А. Анализ ухода гироскопа со сферическим шарикоподшипниковым подвесом // Тр. амер. об-ва инж.-мех. Проблемы трения и смазки. Серия F. – 1975. – Т.97. - №1.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Салиакын Карипбаев, Махмедия Бимагамбетов , Айдос Молдабеков, Шолпан Кошанова
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.