КРАТКОЕ ОПИСАНИЕ РАЗРАБОТКИ РОБОТИЗИРОВАННОГО ЭКЗОСКЕЛЕТА ДЛЯ ГОЛЕНОСТОПНОГО СУСТАВА
DOI:
https://doi.org/10.52167/1609-1817-2022-121-2-282-293Ключевые слова:
робот, экзоскелет, реабилитация, суставАннотация
В работе описывается поэтапная рабзаботка нового роботозированного экзоскелета нижних конечностей для реабилитации голеностопного сустава. Рассматривается новый вид экзоскелета с тремя степенями свободы. Описывается методы исследования, кинематическая схема, компьютерное моделирование и экспериментальное испытание опытного образца. Изучена достаточно большая литература.
Библиографические ссылки
[1] Nursultan, Z., Titov, A., Ceccarelli, M., Balbayev, G. Design and Performance of a Motion-Assisting Device for Ankle // Mechanisms and Machine Science Vol.113 MMS, 2022, с. 659-668. Процентиль – 25.
[2] Жетенбаев Н.Т., Балбаев Ғ.Қ. Робототехника және өнеркәсіптегі жасанды бұлшық еттер // ҚазҰТЗУ Хабаршысы 2020 №2., с. 447-454 г.
[3] Жетенбаев Н.Т., Балбаев Ғ.Қ. Робототехникадағы жасанды бұлшықеттер // «Global science and innovations 2020: central asia» № 3(3). 2020 серия «технические науки» i том Нур-Султан – 2020 33-37 с.
[4] Жетенбаев Н.Т., Балбаев Ғ.Қ., Чеккарелли М., Исабеков Ж.Н. Экзоскелеттерді құрастырудың қысқаша тарихы // ҚазҰТЗУ Хабаршысы 2019 №6., с. 292-295.
[5] Жетенбаев Н.Т., Балбаев Ғ.Қ., Чеккарелли М. Экзоскелеттердің терминологиясы мен жіктелуі // ҚазҰТЗУ Хабаршысы 2019 №6., с. 285-292.
[6] Iancu, C.A., Ceccarelli, M., Lovasz, E.-C.: Design and lab tests of a scaled leg exoskeleton with electric actuators. In: Ferraresi, C., Quaglia, G. (eds.), Advances in Service and Industrial Robotics, pp. 719–726. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276- 8_76.
[7] Russo, M., Ceccarelli, M. Analysis of a wearable robotic system for ankle rehabilitation. Machines 8, 48 (2020). https://doi.org/10.3390/machines8030048. www.mdpi.com/journal/ machines.
[8] Zhang, M., Davies, T.C., Xie, S.: Effectiveness of robot-assisted therapy on ankle rehabilita- tion–a systematic review. J. Neuroeng. Rehabil. 10, 30 (2013).
[9] Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. 2011, 759764 (2011).
[10] Alvarez-Perez, M.G., Garcia-Murillo, M.A., Cervantes-Sánchez, J.J.: Robot-assisted ankle rehabilitation: a review. Disabl. Rehabil. Assist. Technol. 15, 394–408 (2019).
[11] Shi, B., et al.: Wearable ankle robots in post-stroke rehabilitation of gait: a systematic review. 1Front. Neurorobotics 13, 63 (2019).
[12] Yoon, J., Ryu, J., Lim, K.B.: Reconfigurable ankle rehabilitation robot for various exercises. J. Robot. Syst. 22, S15–S33 (2006).
[13] Roy, A., et al.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25, 569–582 (2009).
[14] Sung, E., Slocum, A.H., Ma, R., Bean, J.F., Culpepper, M.L.: Design of an ankle rehabilitation device using compliant mechanisms. J. Med. Devices 5, 011001 (2011).
[15] Lin, C.C., Ju, M.S., Chen, S.M., Pan, B.W.: A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28, 79–86 (2008).
[16] Zhang, M., McDaid, A., Veale, A.J., Peng, Y., Xie, S.Q.: Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution. IEEE Access 7, 85812–85820 (2019).
[17] Chang, T.C., Zhang, X.D.: Kinematics and reliable analysis of decoupled parallel mechanism for ankle rehabilitation. Microelectron. Reliab. 99, 203–212 (2019).
[18] Zhang, M., Davies, T.C., Xie, S.: Effectiveness of robot – assisted therapy an ankle rehabilitation a systematic review. J. NeuroEng. Rehabil. 10, 1–6 (2013).
[19] Ceccarelli M, Carbone G, Ottaviano E (2010) Mechanism Solutions for Legged Robots Overcoming Obstacles. New Trends in Mechanism Science. Springer Dordrecht, 5: 545-553.
[20] Conghui Liang, M. Ceccarelli and Yukio Takeda (2008) Operation Analysis of a One-DOF Pantograph Leg Mechanisms. Proceedings of the RAAD. 17th Int.Workshop on Robotics in Alpe-Adria-Danube Region, Ancona.
[21] Copilusi C (2009) Research regarding some mechanical systems applicable in medicine. PhD Thesis. University of Craiova
[22] Dumitru N, Nanu G, Vintilă D (2008) Mechanisms and mechanical transmissions. Classical and modern modelling teqniques. Editura Didactică şi Pedagogică. Bucuresti.
[23] Grande S, Ottaviano E (2008) A Biped Walking Mechanism For A Rickshaw Robot. CD Proceedings of IFToMM-FeIbIM Int. Symposium on Mechatronics and Multibody Systems MUSME08. San Juan. paper no.20
[24] McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J. Biomech. 23 (suppl. 1): 65-78.
[25] Pratt JE, Krupp BT, Morse CJ, Collins SH: (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. Proc. IEEE International Conference on Robotics and Automation. New Orleans USA. pp. 2430-2435
[26] Kawamoto H, Lee S, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMGbased feedback controller. Proceedings of the IEEE Int. Conference on Systems, Man, and Cybernetics. pp. 1648-1653.
[27] Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. Transactions of the ASME. Journal of Dynamic Systems, Measurements, and Control. 128: 14-25ю
[28] Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE Trans Neural Syst. Rehab. Eng. 15: 367-378.
[29] Walsh J, Paluska D, Pasch K, et. al. (2006) Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. Proc. IEEE Int. Conference on Robotics and Automation. Orlando USA. pp. 3485-3491.
[30] Zoss A, Kazerooni H (2006) Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 20(9): 967-988.
[31] Delahunt, E.; Remus, A. Risk factors for lateral ankle sprains and chronic ankle instability. J. Athl. Train. 2019, 54, 611–616.
[32] Kisner, C.; Colby, L.A. Therapeutic Exercise: Foundations and Techniques, 6th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2012; pp. 849–894.
[33] Guzmán Valdivia, C.H.; Carrera Escobedo, J.L.; Blanco Ortega, A.; Oliver Salazar, M.A.; Gómez Becerra, F.A. Diseño y control de un sistema interactivo para la rehabilitación de tobillo: TobiBot. Ing. Mecánica Tecnol. Desarro. 2014, 5, 255–264.
[34] Pournot, H.; Bieuzen, F.; Duffield, R.; Lepretre, P.M.; Cozzolino, C.; Hausswirth, C. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur. J. Appl. Physiol. 2011, 111, 1287–1295.
[35] Thompson, C.; Kelsberg, G.; St Anna, L.; Poddar, S. Clinical inquiries. Heat or ice for acute ankle sprain? J. Fam. Pract. 2003, 52, 642–643.
[36] Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 803–835.
[37] Krebs, H.I.; Dipietro, L.; Levy-Tzedek, S.; Fasoli, S.E.; Rykman-Berland, A.; Zipse, J.; Fawcett, J.A.; Stein, J.; Poizner, H.; Lo, A.C.; et al. A paradigm shift for rehabilitation robotics. IEEE Eng. Med. Biol. Mag. 2008, 27, 61–70.
[38] Hussain, S.; Jamwal, P.K.; Vliet, P.V.; Brown, N.A.T. Robot Assisted Ankle Neurorehabilitation: State of the art and Future Challenges. Expert Rev. Neurother. 2021, 21, 111–121.
[39] Alcocer, W.; Vela, L.; Blanco, A.; González, J.; Oliver, M. Major trends in the development of ankle rehabilitation devices. Dyna 2012, 176, 45–55.
[40] Ferris, D.P.; Czerniecki, J.M.; Hannaford, B. An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 2005, 21, 189–197.
[41] Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. Int. J. Robot. Res. 2009, 28, 1216–1227.
[42] Jamwal, P.K.; Hussain, S.; Mir-Nasiri, N.; Ghayesh, M.H.; Xie, S.Q. Tele-rehabilitation using in-house wearable ankle rehabilitation robot. Assist.Technol. 2018, 30, 24–33.
[43] Ai, Q.; Zhu, C.; Zuo, J.; Meng, W.; Liu, Q.; Xie, S.Q.; Yang, M. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Sensors 2018, 18, 66.
[44] Ayas, M.S.; Altas, I.H. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng. Pract. 2017, 59, 44–54.
[45] Abu-Dakka, F.J.; Valera, A.; Escalera, J.A.; Abderrahim, M.; Page, A.; Mata, V. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Sensors 2020, 20, 6215.
[46] Zuo, S.; Li, J.; Dong, M.; Zhou, X.; Fan, W.; Kong, Y. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Front. Neurorobot. 2020, 14, 9.
[47] Blanco, A.; Gómez, F.A.; Olivares, V.H.; Abundez, A.; Colín, J. Design and development of a parallel robot based on an XY table for ankle rehabilitation. Int. J. Autom. Control 2015, 9, 89–106.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Гани Балбаев, Нурсултан Жетенбаев, Ержан Сейткулов

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.