КРАТКОЕ ОПИСАНИЕ РАЗРАБОТКИ РОБОТИЗИРОВАННОГО ЭКЗОСКЕЛЕТА ДЛЯ ГОЛЕНОСТОПНОГО СУСТАВА

Авторы

  • Гани Балбаев Евразийский национальный университет им. Л. Н. Гумилева
  • Нурсултан Жетенбаев Алматинский университет энергетики и связи им. Г. Даукеева
  • Ержан Сейткулов Евразийский национальный университет имени Л. Н. Гумилева

DOI:

https://doi.org/10.52167/1609-1817-2022-121-2-282-293

Ключевые слова:

робот, экзоскелет, реабилитация, сустав

Аннотация

В работе описывается поэтапная рабзаботка нового роботозированного экзоскелета нижних конечностей для реабилитации голеностопного сустава. Рассматривается новый вид экзоскелета с тремя степенями свободы. Описывается методы исследования, кинематическая схема, компьютерное моделирование и экспериментальное испытание опытного образца. Изучена достаточно большая литература.

Биографии авторов

Гани Балбаев, Евразийский национальный университет им. Л. Н. Гумилева

PhD, профессор, Нур-Султан, Казахстан, gani_b@mail.ru

Нурсултан Жетенбаев, Алматинский университет энергетики и связи им. Г. Даукеева

магистр, преподаватель, Алматы, Казахстан, nursultan.zhetenbaev@mail.ru

Ержан Сейткулов, Евразийский национальный университет имени Л. Н. Гумилева

к.ф.-м.н., профессор, Нур-Султан, Казахстан, yerzhan.seitkulov@gmail.com

Библиографические ссылки

[1] Nursultan, Z., Titov, A., Ceccarelli, M., Balbayev, G. Design and Performance of a Motion-Assisting Device for Ankle // Mechanisms and Machine Science Vol.113 MMS, 2022, с. 659-668. Процентиль – 25.

[2] Жетенбаев Н.Т., Балбаев Ғ.Қ. Робототехника және өнеркәсіптегі жасанды бұлшық еттер // ҚазҰТЗУ Хабаршысы 2020 №2., с. 447-454 г.

[3] Жетенбаев Н.Т., Балбаев Ғ.Қ. Робототехникадағы жасанды бұлшықеттер // «Global science and innovations 2020: central asia» № 3(3). 2020 серия «технические науки» i том Нур-Султан – 2020 33-37 с.

[4] Жетенбаев Н.Т., Балбаев Ғ.Қ., Чеккарелли М., Исабеков Ж.Н. Экзоскелеттерді құрастырудың қысқаша тарихы // ҚазҰТЗУ Хабаршысы 2019 №6., с. 292-295.

[5] Жетенбаев Н.Т., Балбаев Ғ.Қ., Чеккарелли М. Экзоскелеттердің терминологиясы мен жіктелуі // ҚазҰТЗУ Хабаршысы 2019 №6., с. 285-292.

[6] Iancu, C.A., Ceccarelli, M., Lovasz, E.-C.: Design and lab tests of a scaled leg exoskeleton with electric actuators. In: Ferraresi, C., Quaglia, G. (eds.), Advances in Service and Industrial Robotics, pp. 719–726. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276- 8_76.

[7] Russo, M., Ceccarelli, M. Analysis of a wearable robotic system for ankle rehabilitation. Machines 8, 48 (2020). https://doi.org/10.3390/machines8030048. www.mdpi.com/journal/ machines.

[8] Zhang, M., Davies, T.C., Xie, S.: Effectiveness of robot-assisted therapy on ankle rehabilita- tion–a systematic review. J. Neuroeng. Rehabil. 10, 30 (2013).

[9] Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. 2011, 759764 (2011).

[10] Alvarez-Perez, M.G., Garcia-Murillo, M.A., Cervantes-Sánchez, J.J.: Robot-assisted ankle rehabilitation: a review. Disabl. Rehabil. Assist. Technol. 15, 394–408 (2019).

[11] Shi, B., et al.: Wearable ankle robots in post-stroke rehabilitation of gait: a systematic review. 1Front. Neurorobotics 13, 63 (2019).

[12] Yoon, J., Ryu, J., Lim, K.B.: Reconfigurable ankle rehabilitation robot for various exercises. J. Robot. Syst. 22, S15–S33 (2006).

[13] Roy, A., et al.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25, 569–582 (2009).

[14] Sung, E., Slocum, A.H., Ma, R., Bean, J.F., Culpepper, M.L.: Design of an ankle rehabilitation device using compliant mechanisms. J. Med. Devices 5, 011001 (2011).

[15] Lin, C.C., Ju, M.S., Chen, S.M., Pan, B.W.: A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28, 79–86 (2008).

[16] Zhang, M., McDaid, A., Veale, A.J., Peng, Y., Xie, S.Q.: Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution. IEEE Access 7, 85812–85820 (2019).

[17] Chang, T.C., Zhang, X.D.: Kinematics and reliable analysis of decoupled parallel mechanism for ankle rehabilitation. Microelectron. Reliab. 99, 203–212 (2019).

[18] Zhang, M., Davies, T.C., Xie, S.: Effectiveness of robot – assisted therapy an ankle rehabilitation a systematic review. J. NeuroEng. Rehabil. 10, 1–6 (2013).

[19] Ceccarelli M, Carbone G, Ottaviano E (2010) Mechanism Solutions for Legged Robots Overcoming Obstacles. New Trends in Mechanism Science. Springer Dordrecht, 5: 545-553.

[20] Conghui Liang, M. Ceccarelli and Yukio Takeda (2008) Operation Analysis of a One-DOF Pantograph Leg Mechanisms. Proceedings of the RAAD. 17th Int.Workshop on Robotics in Alpe-Adria-Danube Region, Ancona.

[21] Copilusi C (2009) Research regarding some mechanical systems applicable in medicine. PhD Thesis. University of Craiova

[22] Dumitru N, Nanu G, Vintilă D (2008) Mechanisms and mechanical transmissions. Classical and modern modelling teqniques. Editura Didactică şi Pedagogică. Bucuresti.

[23] Grande S, Ottaviano E (2008) A Biped Walking Mechanism For A Rickshaw Robot. CD Proceedings of IFToMM-FeIbIM Int. Symposium on Mechatronics and Multibody Systems MUSME08. San Juan. paper no.20

[24] McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J. Biomech. 23 (suppl. 1): 65-78.

[25] Pratt JE, Krupp BT, Morse CJ, Collins SH: (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. Proc. IEEE International Conference on Robotics and Automation. New Orleans USA. pp. 2430-2435

[26] Kawamoto H, Lee S, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMGbased feedback controller. Proceedings of the IEEE Int. Conference on Systems, Man, and Cybernetics. pp. 1648-1653.

[27] Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. Transactions of the ASME. Journal of Dynamic Systems, Measurements, and Control. 128: 14-25ю

[28] Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE Trans Neural Syst. Rehab. Eng. 15: 367-378.

[29] Walsh J, Paluska D, Pasch K, et. al. (2006) Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. Proc. IEEE Int. Conference on Robotics and Automation. Orlando USA. pp. 3485-3491.

[30] Zoss A, Kazerooni H (2006) Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 20(9): 967-988.

[31] Delahunt, E.; Remus, A. Risk factors for lateral ankle sprains and chronic ankle instability. J. Athl. Train. 2019, 54, 611–616.

[32] Kisner, C.; Colby, L.A. Therapeutic Exercise: Foundations and Techniques, 6th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2012; pp. 849–894.

[33] Guzmán Valdivia, C.H.; Carrera Escobedo, J.L.; Blanco Ortega, A.; Oliver Salazar, M.A.; Gómez Becerra, F.A. Diseño y control de un sistema interactivo para la rehabilitación de tobillo: TobiBot. Ing. Mecánica Tecnol. Desarro. 2014, 5, 255–264.

[34] Pournot, H.; Bieuzen, F.; Duffield, R.; Lepretre, P.M.; Cozzolino, C.; Hausswirth, C. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur. J. Appl. Physiol. 2011, 111, 1287–1295.

[35] Thompson, C.; Kelsberg, G.; St Anna, L.; Poddar, S. Clinical inquiries. Heat or ice for acute ankle sprain? J. Fam. Pract. 2003, 52, 642–643.

[36] Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 803–835.

[37] Krebs, H.I.; Dipietro, L.; Levy-Tzedek, S.; Fasoli, S.E.; Rykman-Berland, A.; Zipse, J.; Fawcett, J.A.; Stein, J.; Poizner, H.; Lo, A.C.; et al. A paradigm shift for rehabilitation robotics. IEEE Eng. Med. Biol. Mag. 2008, 27, 61–70.

[38] Hussain, S.; Jamwal, P.K.; Vliet, P.V.; Brown, N.A.T. Robot Assisted Ankle Neurorehabilitation: State of the art and Future Challenges. Expert Rev. Neurother. 2021, 21, 111–121.

[39] Alcocer, W.; Vela, L.; Blanco, A.; González, J.; Oliver, M. Major trends in the development of ankle rehabilitation devices. Dyna 2012, 176, 45–55.

[40] Ferris, D.P.; Czerniecki, J.M.; Hannaford, B. An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 2005, 21, 189–197.

[41] Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. Int. J. Robot. Res. 2009, 28, 1216–1227.

[42] Jamwal, P.K.; Hussain, S.; Mir-Nasiri, N.; Ghayesh, M.H.; Xie, S.Q. Tele-rehabilitation using in-house wearable ankle rehabilitation robot. Assist.Technol. 2018, 30, 24–33.

[43] Ai, Q.; Zhu, C.; Zuo, J.; Meng, W.; Liu, Q.; Xie, S.Q.; Yang, M. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Sensors 2018, 18, 66.

[44] Ayas, M.S.; Altas, I.H. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng. Pract. 2017, 59, 44–54.

[45] Abu-Dakka, F.J.; Valera, A.; Escalera, J.A.; Abderrahim, M.; Page, A.; Mata, V. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Sensors 2020, 20, 6215.

[46] Zuo, S.; Li, J.; Dong, M.; Zhou, X.; Fan, W.; Kong, Y. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Front. Neurorobot. 2020, 14, 9.

[47] Blanco, A.; Gómez, F.A.; Olivares, V.H.; Abundez, A.; Colín, J. Design and development of a parallel robot based on an XY table for ankle rehabilitation. Int. J. Autom. Control 2015, 9, 89–106.

Загрузки

Опубликован

25.06.2022

Как цитировать

Балбаев, Г., Жетенбаев, Н., & Сейткулов, Е. (2022). КРАТКОЕ ОПИСАНИЕ РАЗРАБОТКИ РОБОТИЗИРОВАННОГО ЭКЗОСКЕЛЕТА ДЛЯ ГОЛЕНОСТОПНОГО СУСТАВА. Вестник КазАТК, 121(2), 282–293. https://doi.org/10.52167/1609-1817-2022-121-2-282-293

Выпуск

Раздел

Автоматика, телемеханика, связь, энергетика, информационные системы