СОВРЕМЕННЫЕ СТРАТЕГИИ УПРАВЛЕНИЯ ЭНЕРГОПОТРЕБЛЕНИЕМ В ЗДАНИЯХ
DOI:
https://doi.org/10.52167/1609-1817-2024-132-3-329-338Ключевые слова:
системы управления энергопотреблением здания (BEMS), , ОВиК (HVAC), мониторинг энергопотребления зданий, оптимизация энергопотребления, прогнозирование энергопотребленияАннотация
На сегодняшний день системы управления в зданиях стали неотъемлемой частью концепции Smart city. Повышение энергоэффективности зданий вносит огромный вклад в экономику городов. Эффективное использование ресурсов, подводимых к зданиям, позволяет перераспределять ресурсы и повысить эффективность городских сооружений. Более того системы управления энергией в современных зданиях должны учитывать возможность генерации энергии зданиями с использованием возобновляемых источников энергии. В данной работе рассмотрены современные методы управления и повышения эффективности зданий с использованием различных методов, используемых в системах автоматического управления, такие как мониторинг, прогнозирование, оптимизация, сокращение энергопотребления. На основе проведенного анализа приведены основные направления будущих исследований в этой области.
Библиографические ссылки
[1] Hurtado L. A. et al. Building energy management systems—Optimization of comfort and energy use //2013 48th International Universities' Power Engineering Conference (UPEC). – IEEE, 2013. – С. 1-6.
[2] Mathews E. H. et al. HVAC control strategies to enhance comfort and minimise energy usage //Energy and buildings. – 2001. – Т. 33. – №. 8. – С. 853-863.
[3] Yang R., Wang L. Optimal control strategy for HVAC system in building energy management //PES T&D 2012. – IEEE, 2012. – С. 1-8.
[4] Lee D., Cheng C. C. Energy savings by energy management systems: A review //Renewable and Sustainable Energy Reviews. – 2016. – Т. 56. – С. 760-777.
[5] Mariano-Hernández D. et al. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis //Journal of Building Engineering. – 2021. – Т. 33. – С. 101692.
[6] Lee D., Cheng C. C. Energy savings by energy management systems: A review //Renewable and Sustainable Energy Reviews. – 2016. – Т. 56. – С. 760-777.
[7] Manic M. et al. Building energy management systems: The age of intelligent and adaptive buildings //IEEE Industrial Electronics Magazine. – 2016. – Т. 10. – №. 1. – С. 25-39.
[8] Costa A. et al. Building operation and energy performance: Monitoring, analysis and optimisation toolkit //Applied energy. – 2013. – Т. 101. – С. 310-316.
[9] Whitehouse K. et al. Towards occupancy-driven heating and cooling //IEEE Design & Test of Computers. – 2012. – Т. 29. – №. 4. – С. 17-25.
[10] Ruggeri A. G. et al. Planning energy retrofit on historic building stocks: A score-driven decision support system //Energy and Buildings. – 2020. – Т. 224. – С. 110066.
[11] Kalogeras G. et al. Verification and validation of a simulation model for energy use in buildings //2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). – IEEE, 2018. – С. 1-4.
[12] Puranik V. S. CUSUM quality control chart for monitoring energy use performance //2007 IEEE International Conference on Industrial Engineering and Engineering Management. – IEEE, 2007. – С. 1231-1235.
[13] Sulistyanto M. P. T. et al. Preliminary study of utilizing Internet of Things for monitoring energy use in building to support energy audit process //2017 4th international conference on computer applications and information processing technology (CAIPT). – IEEE, 2017. – С. 1-7.
[14] Azar E., Menassa C. C. A decision framework for energy use reduction initiatives in commercial buildings //Proceedings of the 2011 Winter Simulation Conference (WSC). – IEEE, 2011. – С. 816-827.
[15] Zhou R. et al. Building energy use prediction using time series analysis //2013 IEEE 6th International Conference on Service-Oriented Computing and Applications. – IEEE, 2013. – С. 309-313.
[16] Atam E. et al. Optimal control approaches for analysis of energy use minimization of hybrid ground-coupled heat pump systems //IEEE Transactions on Control Systems Technology. – 2015. – Т. 24. – №. 2. – С. 525-540.
[17] Giannakis G. I. et al. A model-assisted adaptive controller fine-tuning methodology for efficient energy use in buildings //2011 19th Mediterranean Conference on Control & Automation (MED). – IEEE, 2011. – С. 49-54.
[18] Aman S., Simmhan Y., Prasanna V. K. Improving energy use forecast for campus micro-grids using indirect indicators //2011 IEEE 11th International Conference on Data Mining Workshops. – IEEE, 2011. – С. 389-397.
[19] Yoon S. H. et al. Multiple power-based building energy management system for efficient management of building energy //Sustainable Cities and Society. – 2018. – Т. 42. – С. 462-470.
[20] Meng Q., Mourshed M., Wei S. Going beyond the mean: Distributional degree-day base temperatures for building energy analytics using change point quantile regression //IEEE Access. – 2018. – Т. 6. – С. 39532-39540.
[21] Zhang Y. et al. Planning and operation of an integrated energy system in a Swedish building //Energy conversion and management. – 2019. – Т. 199. – С. 111920.
[22] Ali U. et al. A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making //Applied Energy. – 2020. – Т. 279. – С. 115834.
[23] Carli R. et al. A decision-making technique to optimize a buildings’ stock energy efficiency //IEEE transactions on systems, man, and cybernetics: systems. – 2016. – Т. 47. – №. 5. – С. 794-807.
[24] Han J. et al. Smart home energy management system including renewable energy based on ZigBee and PLC //IEEE Transactions on Consumer Electronics. – 2014. – Т. 60. – №. 2. – С. 198-202.
[25] Collotta M., Pau G. A novel energy management approach for smart homes using bluetooth low energy //IEEE Journal on selected areas in communications. – 2015. – Т. 33. – №. 12. – С. 2988-2996.
[26] Gruber J. K., Prodanovic M. Two-stage optimization for building energy management //Smart Energy Control Systems for Sustainable Buildings. – Springer International Publishing, 2017. – С. 225-243.
[27] Pedrasa M. A. A., Spooner T. D., MacGill I. F. Coordinated scheduling of residential distributed energy resources to optimize smart home energy services //IEEE transactions on smart grid. – 2010. – Т. 1. – №. 2. – С. 134-143.
[28] Waibel C. et al. Building energy optimization: An extensive benchmark of global search algorithms //Energy and Buildings. – 2019. – Т. 187. – С. 218-240.
[29] Jones S. R. et al. A control methodology for building energy management systems (BEMS) in heat networks with distributed generation //Energy Procedia. – 2018. – Т. 153. – С. 295-302.
[30] Perfumo C., Ward J. K., Braslavsky J. H. Reducing energy use and operational cost of air conditioning systems with multi-objective evolutionary algorithms //IEEE Congress on Evolutionary Computation. – IEEE, 2010. – С. 1-8.
[31] Jiang Q. et al. Research on building energy management in HVAC control system for university library //Energy Procedia. – 2018. – Т. 152. – С. 1164-1169.
[32] Sadat-Mohammadi M. et al. Robust scheduling of multi-chiller system with chilled-water storage under hourly electricity pricing //Energy and Buildings. – 2020. – Т. 218. – С. 110058.
[33] Mambo A. D., Efthekhari M., Thomas S. Fuzzy supervisory control strategies to minimise energy use of airport terminal buildings //18th International Conference on Automation and Computing (ICAC). – IEEE, 2012. – С. 1-6.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Фарида Телгожаева, Акмарал Толегенова, Рахиля Нургалиева, Айнагуль Бердыгулова, Айнұр Тұрсынхан
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.