ОБЗОР ВЫСОКОСКОРОСТНЫХ ЦИФРОВЫХ СПЕКТРО-КОРРЕЛЯЦИОННЫХ МЕТОДОВ ДЛЯ РАДИОПЕЛЕГАНЦИИ С ИСПОЛЬЗОВАНИЕМ ОПТИЧЕСКИХ ДАТЧИКОВ
DOI:
https://doi.org/10.52167/1609-1817-2024-132-3-392-405Ключевые слова:
радиопеленгация (РПД), спектрально-корреляционный анализ, оптические датчики, фотонная обработка сигналов, электрооптическая модуляция, аналого-цифровое преобразование (АЦП), цифровая обработка сигналов (ЦОС), высокочастотные радиосигналы, оптические модуляторы, оптоволокно, преобразование оптического сигнала, методы шумоподавленияАннотация
Определение радионаправления (RDF) является важным методом в различных приложениях, включая телекоммуникации, оборону и радиоразведку. Традиционные методы RDF часто полагаются на антенные решетки и обработку аналоговых сигналов, что ограничивает их скорость и точность. В этой исследовательской статье мы рассматриваем современные подходы с использованием оптических датчиков и высокоскоростной цифровой спектральной корреляции для повышения скорости и точности радиопеленгации. Мы также обсуждаем основные принципы, методы и потенциальные возможности применения инновационных технологий.
Библиографические ссылки
[1] Korinek M. A., Schindler M. M., Stiglitz J. Technological progress, artificial intelligence, and inclusive growth. – International Monetary Fund, 2021. https://www.elibrary.imf.org/view/journals/001/2021/166/article-A001-en.xml
[2] Hoehn J. R., Gallagher J. C., Sayler K. M. Overview of department of defense use of the electromagnetic spectrum. – Congressional Research Service, 2020. – С. 41. https://apps.dtic.mil/sti/pdfs/AD1169613.pdf
[3] López J. H., Shlyagin M. G., Martínez-Manuel R. Correlation-based multiplexing of spectral channels and fiber-optic sensors using unmodulated continuous-wave distributed feedback diode lasers //Optics Letters. – 2022. – Т. 47. – №. 5. – С. 1210-1213.
[4] Khan S. A. Digital design of signal processing systems: a practical approach. – John Wiley & Sons, 2011. https://books.google.kz/books?hl=ru&lr=&id=BpHUDf-6cLgC&oi=fnd&pg=PP8&dq=This+innovative+approach+uses+digital+signal+processing+and+optical+technologies+to+change+the+way+radio+signals+are+routed.&ots=9SrsZgsP1q&sig=MMGlzIZMEoy2cT8sl5Z90vcZTTg&redir_esc=y#v=onepage&q&f=false
[5] Ilčev D. S. New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF) //Transactions on Maritime Science. – 2021. – Т. 10. – №. 01. – С. 68-83.
[6] Denisowski P. A comparison of radio direction finding technologies //presentation, Dept of Energy Spectrum Management Conference, Las Vegas. – 2011.
[7] National Research Council et al. Laser radar: progress and opportunities in active electro-optical sensing. – National Academies Press, 2014.
[8] Lubna L. et al. Radio frequency sensing and its innovative applications in diverse sectors: A comprehensive study //Frontiers in Communications and Networks. – 2022. – Т. 3. – С. 1010228. https://doi.org/10.3389/frcmn.2022.1010228
[9] Bielecki Z. et al. Review of photodetectors characterization methods //Bulletin of the Polish Academy of Sciences, Technical Sciences. – 2022. – Т. 70. – №. 2. DOI:10.24425/bpasts.2022.140534
[10] Santos J. L., Farahi F. (ed.). Handbook of optical sensors. – Crc Press, 2014. https://books.google.kz/books?hl=ru&lr=&id=2nDng4udoo0C&oi=fnd&pg=PA27&dq=What+are+Optical+Sensors+Used+For&ots=OGutrKkQxo&sig=aEx7iZL_5XXk54pVwC7rIzoxjxg&redir_esc=y#v=onepage&q=What%20are%20Optical%20Sensors%20Used%20For&f=false
[11] Cerny C. L. A. Integrated Photonics for RF Sensing Applications //2019 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP). – IEEE, 2019. – С. 1-2. DOI: 10.1109/AVFOP.2019.8908195
[12] Cui L. et al. Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art //Sensors. – 2019. – Т. 19. – №. 18. – С. 4012. https://doi.org/10.3390/s19184012
[13] Abdullah S., Xiao G., Amaya R. E. A review on the history and current literature of metamaterials and its applications to antennas & radio frequency identification (RFID) devices //IEEE Journal of Radio Frequency Identification. – 2021. – Т. 5. – №. 4. – С. 427-445. DOI: 10.1109/JRFID.2021.3091962
[14] Katrenova Z. et al. Status and future development of distributed optical fiber sensors for biomedical applications //Sensing and Bio-Sensing Research. – 2023. – С. 100616.
[15] Yang M. et al. Enhanced radio-frequency sensors based on a self-dual emitter-absorber //Physical Review Applied. – 2021. – Т. 15. – №. 1. – С. 014026. DOI: 10.1103/PhysRevApplied.15.014026
[16] Dastres R., Soori M. A Review in Advanced Digital Signal Processing Systems //International Journal of Electrical and Computer Engineering. – 2021. https://hal.science/hal-03183633/
[17] Gaikwad K. M., Chavan M. S. Vedic mathematics for digital signal processing operations: a review //International Journal of Computer Applications. – 2015. – Т. 113. – №. 18. https://www.researchgate.net/profile/Mahesh-Chavan-2/publication/276344924_Vedic_Mathematics_for_Digital_Signal_Processing_Operations_A_Review/links/5aaa3f73a6fdccd3b9ba9a5d/Vedic-Mathematics-for-Digital-Signal-Processing-Operations-A-Review.pdf
[18] Smailov N. et al. Improving the accuracy of a digital spectral correlationinterferometric method of direction finding with analytical signal reconstruction for processing an incomplete spectrum of the signal //Eastern-European Journal of Enterprise Technologies. – 2023. – Т. 125. – №. 9. DOI10.15587/1729-4061.2023.288397
[19] Sabibolda A. et al. Improving the Accuracy And Performance Speed Of The Digital Spectral-Correlation Method For Measuring Delay In Radio Signals And Direction Finding //Eastern-European Journal of Enterprise Technologies. – 2022. – Т. 1. – №. 9. – С. 115. doi: https://doi.org/10.15587/1729-4061.2022.252561
[20] Antoni J., Xin G., Hamzaoui N. Fast computation of the spectral correlation //Mechanical Systems and Signal Processing. – 2017. – Т. 92. – С. 248-277. https://doi.org/10.1016/j.ymssp.2017.01.011
[21] Gormley D. J. A low-memory spectral-correlation analyzer for digital QAM-SRRC waveforms //A Low-Memory Spectral-Correlation Analyzer for Digital QAM-SRRC Waveforms. – 2021.
[22] Tekbıyık K. et al. Spectrum sensing and signal identification with deep learning based on spectral correlation function //IEEE Transactions on Vehicular Technology. – 2021. – Т. 70. – №. 10. – С. 10514-10527. DOI: 10.1109/TVT.2021.3109236
[23] Saatci E., Saatci E. Period determination in cyclo-stationary signals by autocorrelation and ramanujan subspaces //IEEE Signal Processing Letters. – 2020. – Т. 27. – С. 266-270. DOI: 10.1109/LSP.2020.2966877
[24] Gouldieff V. et al. Cyclic autocorrelation-based spectrum sensing: Theoretical derivation framework //2018 25th International Conference on Telecommunications (ICT). – IEEE, 2018. – С. 600-604. DOI: 10.1109/ICT.2018.8464887
[25] Lunden J., Kassam S. A., Koivunen V. Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio //IEEE Transactions on Signal Processing. – 2009. – Т. 58. – №. 1. – С. 38-52. DOI: 10.1109/TSP.2009.2029790
[26] Dikmese S. et al. Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation //IEEE Journal on Selected Areas in Communications. – 2016. – Т. 35. – №. 1. – С. 159-172. DOI: 10.1109/JSAC.2016.2633058
[27] Tan L., Jiang J. Digital signal processing: fundamentals and applications. – Academic press, 2018. https://books.google.kz/books?hl=ru&lr=&id=MxlxDwAAQBAJ&oi=fnd&pg=PP1&dq=(PDF)+Digital+Signal+Processing&ots=pacTXknn0F&sig=OqAnQz5Ne-_ilMwcQ2op9VOKy9E&redir_esc=y#v=onepage&q&f=false
[28] Shevgunov T., Efimov E., Guschina O. Estimation of a Spectral Correlation Function Using a Time-Smoothing Cyclic Periodogram and FFT Interpolation—2N-FFT Algorithm //Sensors. – 2022. – Т. 23. – №. 1. – С. 215. https://doi.org/10.3390/s23010215
[29] Lo M. K., Leung Y. F. Probabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random field //Journal of geotechnical and geoenvironmental engineering. – 2017. – Т. 143. – №. 9. – С. 04017044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001720
[30] Vorburger T. V. et al. Applications of cross-correlation functions //Wear. – 2011. – Т. 271. – №. 3-4. – С. 529-533. https://doi.org/10.1016/j.wear.2010.03.030
[31] Borghesani P., Antoni J. A faster algorithm for the calculation of the fast-spectral correlation //Mechanical Systems and Signal Processing. – 2018. – Т. 111. – С. 113-118. https://doi.org/10.1016/j.ymssp.2018.03.059
[32] Chiani M., Win M. Z., Zanella A. Error probability for optimum combining of M-ary PSK signals in the presence of interference and noise //IEEE Transactions on Communications. – 2003. – Т. 51. – №. 11. – С. 1949-1957. DOI: 10.1109/TCOMM.2003.819197
[33] Jiang W. et al. Radar Target Characterization and Deep Learning in Radar Automatic Target Recognition: A Review //Remote Sensing. – 2023. – Т. 15. – №. 15. – С. 3742. https://doi.org/10.3390/rs15153742
[34] Vanhoy G., Schucker T., Bose T. Classification of LPI radar signals using spectral correlation and support vector machines //Analog integrated circuits and signal processing. – 2017. – Т. 91. – С. 305-313. https://link.springer.com/article/10.1007/s10470-017-0944-0
[35] Hofmann J. et al. Spectral Correlation for Signal Presence Detection and Frequency Acquisition of Small Satellites. Aerospace 2021, 8, 57 //Stress8. – 2021. – С. 43.
[36] Kawase T. et al. Speech enhancement parameter adjustment to maximize accuracy of automatic speech recognition //IEEE Transactions on Consumer Electronics. – 2020. – Т. 66. – №. 2. – С. 125-133. DOI: 10.1109/TCE.2020.2986003
[37] This image was created using the DALL•e artificial intelligence model from OpenAI.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Аскар Абдыкадыров, Нуржигит Смайлов, Ажар Аналиева, Акежан Сабиболда
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.