АНАЛИЗ РАСПОЗНАВАНИЯ ОБРАЗОВ В МАШИННОМ ОБУЧЕНИИ

Авторы

  • Күлжан Тогжанова Алматинский технологический университет
  • Гульжан Кашаганова Алматинский технологический университет
  • Жазира Джулаева Алматинский технологический университет
  • Нұржан Жұмахан Алматинский технологический университет
  • Ержан Ильясов Алматинский технологический университет

DOI:

https://doi.org/10.52167/1609-1817-2023-128-5-250-259

Ключевые слова:

нейронная сеть, машинное обучение, распознавание образов, идентификация моделей, безопасность

Аннотация

В последнее время все большее внимание уделяется схеме нейронных сетей и методологии теории статистического обучения. Это требует внимания при разработке системы распознавания. Основная цель этой статьи - дать подробный обзор различных методов, которые можно использовать на разных этапах работы системы распознавания образов.

Биографии авторов

Күлжан Тогжанова, Алматинский технологический университет

PhD, ассоцированный профессор,  Алматы,Қазақстан, togzhanova_kuljan@mail.ru

Гульжан Кашаганова, Алматинский технологический университет

PhD, ассоциированный профессор, Алматы, Қазақстан, guljan_k70@mail.ru

Жазира Джулаева , Алматинский технологический университет

докторант, Алматы, Казахстан, zhazj@mail.ru

Нұржан Жұмахан, Алматинский технологический университет

магистр, ассистент  преподаватель, Алматы, Казахстан, nurzhan_14_95@mail.ru

Ержан Ильясов, Алматинский технологический университет

лектор, Алматы, Казахстан, Ilyassov.yerzhan@mail.ru

Библиографические ссылки

[1] Bhamare DP, Suryawanshi P. Review on Reliable Pattern Recognition with Machine Learning Techniques. Fuzzy Information and Engineering, 2018; 10(3): 362–377. https://doi.org/10.1080/16168658.2019.1611030.

[2] Armengol E, Boixader D, Grimaldo,F. Special Issue on Pattern Recognition Techniques in Data Mining. Pattern Recognition Letters, 2017; 93: 1–2. https://doi.org/10.1016/j.patrec.2017.02.014

[3] Kumar S, Gao X, Welch I. A machine learning based web spam filtering approach. In 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), 2016.

[4] Ermushev S, Balashov A. A Complex Machine Learning Technique for Ground Target Detection and Classification. Int J Appl Eng Res., 2017; 11(1): 158–161.

[5] Wu J, Yu Y, Huang C, Yu K. Deep multiple instance learning for image classification and auto-annotation. Computer Vision and Pattern Recognition, 2015. https://doi.org/10.1109/cvpr.2015.7298968.

[6] Notton VG, Kalogirou S. Machine learning methods for solar radiation forecasting: a review. Renew Energ., 2017; 105: 569–582.

[7] Tajbakhsh N, Suzuki K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs. Pattern Recognit., 2017; 63: 476–486.

[8] Aginako N, Echegaray G, Martínez-Otzeta J. Iris matching by means of machine learning paradigms: a new approach to dissimilarity computation. Pattern Recognit Lett., 2017; 91: 60–64.

[9] Saii MM. Classification of Pattern Recognition Techniques Used Deep Learning and Machine Learning. International Journal of Computer Science Trends and Technology (IJCST), 2019; 7(3): 165-173.

[10] Omarov B, Cho YI. Machine learning based pattern recognition and classification framework development. In 2017 17th International Conference on Control, Automation and Systems (ICCAS 2017). Ramada Plaza, Jeju, Korea, 2017.

[11] Ushmani A. Machine Learning Pattern Matching. International Journal of Computer Science Trends and Technology (IJCST), 2019; 7(2): 4-7.

[12] Chen S, Pande A, Mohapatra P. Sensor-assisted facial recognition: an enhanced biometric authentication system for smartphones. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, 2014.

[13] Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, Metaxas DN, Zhou X. Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition. IEEE Transactions on Medical Imaging, 2016; 35(5): 1332–1343. https://doi.org/10.1109/tmi.2016.2524985.

[14] Monté-Rubio G, Falcón C, Pomarol-Clotet E. A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods. NeuroImage, 2018; 178: 753-768.

[15] Silasai O, Khowfa W. The Study on Using Biometric Authentication on Mobile Device. NU. International Journal of Science, 2020; 17(1): 90-110.

[16] Findling R, Hölzl M, Mayrhofer RM. Mobile match-on-card authentication using offline-simplified models with gait and face biometrics. IEEE Trans Mob Comput., 2018; 17(11): 2578-2590.

[17] Nair HH, Amte GS, Todase NB, Dandekar PR. Face detection and recognition in smartphones. International Journal of Advance Research and Development, 2018; 3(4): 177-182.

[18] Xi K, Hu J, Han F. Mobile device access control: an improved

correlation-based face authentication scheme and its java me application. Concurr Comp Pract Exp, 2012; 24: 1066-1085.

[19] Zhu X, Wang Z, Lin P, Ma Z, Yu Z. Algorithm and Technology Application of Image Recognition Based on Artificial Intelligence. Journal of Physics: Conference Series, 2021; 2136(012062): 1-6.

[20] Jangapally T, Hiwarkar T. Performance Analysis of Pattern Recognition Algorithms Using Artificial Neural Networks. International Research Journal of Modernization in Engineering Technology and Science, 2020; 2(7): 1501-1508.

[21] Veena S, Shankari T, Sowmiya S, Varsha M. A Survey on Tools Used For Machine Learning. International Journal of Engineering Applied Sciences and Technology, 2020; 4(9): 116-119.

Опубликован

27.10.2023

Как цитировать

Тогжанова, К., Кашаганова, Г., Джулаева , Ж. ., Жұмахан, Н., & Ильясов, Е. (2023). АНАЛИЗ РАСПОЗНАВАНИЯ ОБРАЗОВ В МАШИННОМ ОБУЧЕНИИ. Вестник КазАТК, 128(5), 250–259. https://doi.org/10.52167/1609-1817-2023-128-5-250-259

Выпуск

Раздел

Автоматизация, телемеханика, связь, компьютерные науки

Наиболее читаемые статьи этого автора (авторов)

1 2 3 > >>