ИССЛЕДОВАНИЕ СИСТЕМЫ УПРАВЛЕНИЯ ДВИЖЕНИЕМ МАНИПУЛЯТОРА С ПОМОЩЬЮ КОМПЬЮТЕРНОГО ЗРЕНИЯ
DOI:
https://doi.org/10.52167/1609-1817-2023-129-6-319-326Ключевые слова:
система управления, манипулятор, компьютерное зрение, распознавание объектовАннотация
В последние годы технология компьютерного зрения достигла значительного прогресса, расширив сферу ее применения от простых задач распознавания изображений до сложных проблем реального мира. Появление компьютерного зрения открыло новые горизонты для расширения возможностей роботов-манипуляторов в различных приложениях — от производства до здравоохранения. Манипуляторы, механические руки, предназначенные для выполнения задач, традиционно управляются с помощью ручного ввода или заранее запрограммированной последовательности. Целью этой рукописи является исследование и анализ компьютерного зрения, применимого для улучшения управления и эффективности манипуляторов.
Библиографические ссылки
[1] 1. Q. T. Do and J. Chaudri, "Creating Computer Vision Models for Respiratory Status Detection," 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 1350-1353, doi: 10.1109/EMBC48229.2022.9871978.
[2] M. J. Domínguez-Morales, Á. Jiménez-Fernández, G. Jiménez-Moreno, C. Conde, E. Cabello and A. Linares-Barranco, "Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors," in IEEE Access, vol. 7, pp. 138415-138425, 2019, doi: 10.1109/ACCESS.2019.2943160.
[3] D. Castells-Rufas et al., "A Survey of FPGA-Based Vision Systems for Autonomous Cars," in IEEE Access, vol. 10, pp. 132525-132563, 2022, doi: 10.1109/ACCESS.2022.3230282.
[4] L. Ruotsalainen, A. Morrison, M. Mäkelä, J. Rantanen and N. Sokolova, "Improving Computer Vision-Based Perception for Collaborative Indoor Navigation," in IEEE Sensors Journal, vol. 22, no. 6, pp. 4816-4826, 15 March15, 2022, doi: 10.1109/JSEN.2021.3106257.
[5] L. Guo, D. Zhou, J. Zhou, S. Kimura and S. Goto, "Lossy Compression for Embedded Computer Vision Systems," in IEEE Access, vol. 6, pp. 39385-39397, 2018, doi: 10.1109/ACCESS.2018.2852809.
[6] M. Faisal, F. Albogamy, H. Elgibreen, M. Algabri and F. A. Alqershi, "Deep Learning and Computer Vision for Estimating Date Fruits Type, Maturity Level, and Weight," in IEEE Access, vol. 8, pp. 206770-206782, 2020, doi: 10.1109/ACCESS.2020.3037948.
[7] S. V. Mahadevkar et al., "A Review on Machine Learning Styles in Computer Vision—Techniques and Future Directions," in IEEE Access, vol. 10, pp. 107293-107329, 2022, doi: 10.1109/ACCESS.2022.3209825.
[8] Shahzad, X. Gao, A. Yasin, K. Javed and S. M. Anwar, "A Vision-Based Path Planning and Object Tracking Framework for 6-DOF Robotic Manipulator," in IEEE Access, vol. 8, pp. 203158-203167, 2020, doi: 10.1109/ACCESS.2020.3037540.
[9] H. Chen and Z. Deng, "Bibliometric Analysis of the Application of Convolutional Neural Network in Computer Vision," in IEEE Access, vol. 8, pp. 155417-155428, 2020, doi: 10.1109/ACCESS.2020.3019336.
[10] J. M. Ponce, A. Aquino, B. Millan and J. M. Andújar, "Automatic Counting and Individual Size and Mass Estimation of Olive-Fruits Through Computer Vision Techniques," in IEEE Access, vol. 7, pp. 59451-59465, 2019, doi: 10.1109/ACCESS.2019.2915169.
[11] M. R. Gubbi, E. A. Gonzalez and M. A. L. Bell, "Theoretical Framework to Predict Generalized Contrast-to-Noise Ratios of Photoacoustic Images With Applications to Computer Vision," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 6, pp. 2098-2114, June 2022, doi: 10.1109/TUFFC.2022.3169082.
[12] G. Balbayev, A. Mussina, A. Zhauyt, B. Shingissov and M. Kalekeyeva, “Neural Control for Image Stabilisation Using a Reference Model,“ Volume 10, Issue 1, January 2021, Pages 17-21, doi: 10.18178/IJMERR.10.1.17-21.
[13] Y. -J. Cao et al., "Recent Advances of Generative Adversarial Networks in Computer Vision," in IEEE Access, vol. 7, pp. 14985-15006, 2019, doi: 10.1109/ACCESS.2018.2886814.
[14] F. Alrowais et al., "Modified Earthworm Optimization With Deep Learning Assisted Emotion Recognition for Human Computer Interface," in IEEE Access, vol. 11, pp. 35089-35096, 2023, doi: 10.1109/ACCESS.2023.3264260.
[15] C. Chambers et al., "Computer Vision to Automatically Assess Infant Neuromotor Risk," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 11, pp. 2431-2442, Nov. 2020, doi: 10.1109/TNSRE.2020.3029121.
[16] S. Dey, A. K. Singh, D. K. Prasad and K. D. Mcdonald-Maier, "SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology," in IEEE Access, vol. 7, pp. 157158-157172, 2019, doi: 10.1109/ACCESS.2019.2949483.
[17] R. Castro, I. Pineda, W. Lim and M. E. Morocho-Cayamcela, "Deep Learning Approaches Based on Transformer Architectures for Image Captioning Tasks," in IEEE Access, vol. 10, pp. 33679-33694, 2022, doi: 10.1109/ACCESS.2022.3161428.
[18] W. Zhang, B. Cheng and Y. Lin, "Driver drowsiness recognition based on computer vision technology," in Tsinghua Science and Technology, vol. 17, no. 3, pp. 354-362, June 2012, doi: 10.1109/TST.2012.6216768.
[19] Yousefzadeh, G. Orchard, T. Serrano-Gotarredona and B. Linares-Barranco, "Active Perception With Dynamic Vision Sensors. Minimum Saccades With Optimum Recognition," in IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 4, pp. 927-939, Aug. 2018, doi: 10.1109/TBCAS.2018.2834428.
[20] Tultayev, G. Balbayev, A. Zhauyt, A. Sultan, and A. Mussina, “Kinematic Synthesis of Mechanism for System with a Technical Vision,” MATEC Web of Conferences, vol. 237, Nov. 2018, doi: 10.1051/matecconf/201823703009.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Перизат Рахметова, Жанібек Исабеков, Алдаберген Бектилевов

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.