АЛГОРИТМ КОНТРОЛЯ И КООРДИНАЦИИ РОЯ МОБИЛЬНЫХ АВТОНОМНЫХ РОБОТОВ
DOI:
https://doi.org/10.52167/1609-1817-2023-125-2-412-421Ключевые слова:
рой, роевая робототехника, лидер-последователь, виртуальный лидер, координация, мультиагентная системаАннотация
В данной научной статье исследуется движение роя самоорганизованных автономных роботов с помощью алгоритма управления на основе моделей поведения. Координация роботов в системе реализована с помощью метода «лидер-последователь» с виртуальным лидером для повышения отказоустойчивости. Для анализа этого алгоритма было смоделировано движение роя роботов.
Библиографические ссылки
[1] A.K. Kereyev, S.K. Atanov, K.P. Aman, Z.K. Kulmagambetova and B.T. Kulzhagarova. Journal of Theoretical and Applied Information Technology, vol. 98(8), 1187–1200, 2020
[2] Baimukhamedov, M.F., Moldamurat, K., Akgul, M.K. Optimal control model of the automobile transport. 1312–1316. 2019, October
[3] M. B. Yassein, S. Aljawarneh and A. Al-Sadi, "Challenges and features of IoT communications in 5G networks," 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 2017, pp. 1-5, doi: 10.1109/ICECTA.2017.8251989.
[4] Mardini, W., Aljawarneh, S. & Al-Abdi, A. Using Multiple RPL Instances to Enhance the Performance of New 6G and Internet of Everything (6G/IoE)-Based Healthcare Monitoring Systems. Mobile Netw Appl 26, 952–968 (2021).
[5] Al-Husainy MA, Al-Shargabi B, Aljawarneh S. Lightweight cryptography system for IoT devices using DNA. Computers & Electrical Engineering. 2021 Oct 1;95:107418.
[6] Sakhipov, A., Yermaganbetova, M. An educational portal with elements of blockchain technology in higher education institutions of Kazakhstan: opportunities and benefits. Global Journal of Engineering Education, vol.24, № 2, p.149 – 1542022. ISSN:1328-3154
[7] V. E. Karpov, Modeli sotsial’nogo povedeniya v gruppovoy robototekhnike [Models of Social Behavior in Group Robotics], UBS, 2016, vol. 59, 165–232
[8] Yemelyev, A. К., Kh Moldamurat, and R. B. Seksenbaeva. "Development and Implementation of Automated UAV Flight Algorithms for Inertial Navigation Systems." In 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), pp. 1-5. IEEE, 2021.
[9] Kyzyrkanov, A. E., S. Atanov, and S. Aljawarneh. " Formation control and coordination of swarm robotic systems" In The 7th International Conference on Engineering amp MIS 2021.
[10] A. Kyzyrkanov, S. Atanov and S. Aljawarneh, "Coordination of movement of multiagent robotic systems," 2021 16th International Conference on Electronics Computer and Computation (ICECCO), 2021, pp. 1-4, doi: 10.1109/ICECCO53203.2021.9663796.
[11] Кызырканов, А., Атанов, С., Турсынова, Н. и Альджаварнех, Ш. 2022. КООРДИНАЦИЯ ДВИЖЕНИЯ МНОГОАГЕНТНЫХ РОБОТОТЕХНИЧЕСКИХ СИСТЕМ. «Физико-математические науки». 77, 1 (мар. 2022), 56–63. DOI:https://doi.org/10.51889/2022-1.1728-7901.07.
[12] Balch, Tucker, and Ronald C. Arkin. "Behaviour-based formation control for multirobot teams." IEEE transactions on robotics and automation 14, no. 6 (1998): 926-939.
[13] Xu, Dongdong, Xingnan Zhang, Zhangqing Zhu, Chunlin Chen, and Pei Yang. "Behaviour-based formation control of swarm robots." mathematical Problems in Engineering 2014 (2014).
[14] Raheem, Firas A., and Mustafa M. Badr. "Development of Modified path planning algorithm using artificial potential field (APF) based on PSO for factors optimization." American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 37, no. 1 (2017): 316-328.
[15] Wang, Shun-Min, Ming-Chung Fang, and Cheng-Neng Hwang. "Vertical obstacle avoidance and navigation of autonomous underwater vehicles with H∞ controller and the artificial potential field method." The Journal of Navigation 72, no. 1 (2019): 207-228.
[16] Yan, Xun, Dapeng Jiang, Runlong Miao, and Yulong Li. "Formation Control and Obstacle Avoidance Algorithm of a Multi-USV System Based on Virtual Structure and Artificial Potential Field." Journal of Marine Science and Engineering 9, no. 2 (2021): 161.
[17] Wang, Xun, Daibing Zhang, Lincheng Shen, and Jianwei Zhang. "A virtual force approach for cooperative standoff target tracking using multiple robots." In 2016 Chinese Control and Decision Conference (CCDC), pp. 1348-1353. IEEE, 2016.
[18] Il'ichev KV, Mantserov SA. Razrabotka masshtabiruyemoy mobil'noy robototekhnicheskoy sistemy royevogo vzaimodeystviya.[Development of a scalable mobile robotic swarm interaction system.] Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnyye tekhnologii, sistemy upravleniya.[ Bulletin of the Perm National Research Polytechnic University. Electrical engineering, information technology, control systems] 2017(21).
[19] Hernandez-Martinez, Eduardo Gamaliel, and E. Aranda Bricaire. "Non-collision conditions in multi-agent virtual leader-based formation control." International Journal of Advanced Robotic Systems 9, no. 4 (2012): 100.
[20] Das, Bikramaditya, Bidyadhar Subudhi, and B. Bhusan Pati. "Adaptive sliding mode formation control of multiple underwater robots." Archives of control Sciences 24, no. 4 (2014): 515-543.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Абзал Қызырқанов, Сабыржан Атанов, Самат Касымханов, Әлібек Орынбек, Қанибек Сансызбай

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.